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A New Monte Carlo Power Method for the Eigenvalue 
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We propose a new Monte Carlo method for calculating eigenvalues of transfer 
matrices leading to free energies and to correlation lengths of classical and 
quantum many-body systems. Generally, this method can be applied to the 
calculation of the maximum eigenvalue of a nonnegative matrix A such that all 
the matrix elements of A k are strictly positive for an integer k. This method is 
based on a new representation of the maximum eigenvalue of the matrix A as 
the thermal average of a certain observable of a many-body system. Therefore 
one can easily calculate the maximum eigenvalue of a transfer matrix leading to 
the free energy in the standard Monte Carlo simulations, such as the Metropolis 
algorithm. As test cases, we calculate the free energies of the square-lattice Ising 
model and of the spin-l/2 X Y  Heisenberg chain. We also prove two useful 
theorems on the ergodicity in quantum Monte Carlo algorithms, or more 
generally, on the ergodicity of Monte Carlo algorithms using our new represen- 
tation of the maximum eigenvalue of the matrix A. 

KEY WORDS: Monte Carlo simulations; power method; eigenvalue 
problems; transfer matrices; free energy calculation. 

1. I N T R O D U C T I O N  

Since  M e t r o p o l i s  et al. i n t r o d u c e d  the  M o n t e  C a r l o  m e t h o d  based  on  the  

idea  o f  i m p o r t a n c e  s a m p l i n g  in to  the  field o f  the  s ta t i s t ica l  mechan ic s ,  (l) 

this m e t h o d  has  been  wide ly  used to s tudy  n o t  on ly  classical  m a n y - b o d y  

sys tems,  (z4) bu t  a lso  q u a n t u m  ones.  (5-7) In  fact ,  this  m e t h o d  is ve ry  useful  

for  c a l cu l a t i ng  t h e r m a l  ave rages  o f  loca l  observab les .  

H o w e v e r ,  in the  i m p o r t a n c e - s a m p l i n g  m e t h o d ,  it is ve ry  h a r d  to  

o b t a i n  p a r t i t i o n  func t ions  o r  free energies ,  because  these  quan t i t i e s  a re  

n o t  local .  T h e  p r o b l e m  of  ca l cu l a t i ng  free energ ies  in the M o n t e  C a r l o  
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simulations has received considerable attention theoretically, and also 
practically, ~2'3) and a number of approaches have been proposed, ~2'3) 
among which the thermodynamic integration method is probably the most 
popular. ~8) 

In this paper, for the purpose of calculating the maximum eigenvalue 
of a given transfer matrix leading to free energies and correlation lengths, 
we propose a new Monte Carlo method that is a power method combined 
with the idea of importance sampling. More generally, this method can be 
applied to the calculation of the maximum eigenvalue of a nonnegative 
matrix A such that all the matrix elements of ~]k are strictly positive for an 
integer k. (In most applications, the matrix A is chosen as the transfer 
matrix of a many-body system.) 

We start from the Rayleigh quotient, which is the standard expression 
of the power method for calculating the maximum eigenvalue of the above 
matrix .~. Our basic observation is that, with an appropriate choice of the 
trial vector in the Rayleigh quotient, the expression for the Rayleigh 
quotient becomes the thermal average of an observable of a classical many- 
body system with free boundary conditions. Such a representation of the 
maximum eigenvalue in terms of the thermal average may be of interest in 
its own right, but can also be used as a basis of numerical analysis. By 
calculating the thermal average of the above observable by a suitable 
Monte Carlo method, one can easily obtain the desired maximum eigen- 
value. In this sense, our method may be summarized as a combination of 
the power method with the idea of importance sampling. 

The paper is organized as follows. In Section 2, we derive the basic 
representation of the maximum eigenvalue of the matrix i] in terms of the 
thermal average of an observable in a many-body system. As test cases, we 
calculate the free energies of the square-lattice Ising model and of the spin- 
1/2 X Y  Heisenberg chain in Section 3 and Section 4, respectively. As the 
reader can quickly read off from Tables I and II, the numerical results are 
encouraging. For the latter case, we use the path integral idea of Suzuki {6' 7) 

to transform the partition function of the quantum system into a partition 
of a classical system. However, for the system so obtained, the ergodicity 
of Monte Carlo sequences does not simply hold. (5'6) For the problem, in 
Section 5 we prove two useful theorems that guarantee the ergodicity of 
quantum Monte Carlo algorithms, or in more general terms, the ergodicity 
of Monte Carlo algorithms for our new representation of the maximum 
eigenvalue of the matrix .~, i.e., for the thermal average of an observable in 
a classical system with Boltzmann weights determined from the matrix 
elements of ~]. As a demonstration, these theorems are used to determine 
updating procedures in the Monte Carlo simulations for the spin-l/2 X Y  
Heisenberg chain in Section 4. 
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2. MONTE CARLO POWER METHOD 

In this section, we derive a new representation for the maximum 
eigenvalue of a nonnegative matrix in terms of the thermal average in a 
many-body system. The representation will serve as the basis of our new 
Monte Carlo method. 

For  this purpose, we begin with a review of the power method which 
we will use in our new formalism. 

Given a nonnegative matrix fl, for which there exists an integer k such 
that all the matrix elements of A k are strictly positive in an orthonormal 
basis {u(n)},, we consider the Rayleigh quotient 

A (L) :=  <~, A~+'4,> 
<r fiE0> ( L = 0 ,  1, 2,...) (2.1) 

(the symbol := signifies definition) for a trial vector r with nonnegative 
elements in the orthonormal basis {u(n)},. Then the maximum eigenvalue 
A ma~ of the matrix fl is written as 

A max--- lim A (L) (2.2) 
LToo 

by the Perron-Frobenius theorem, because all the matrix elements of fl~' 
are strictly positive for any integer k'~> k. 

Generally, power methods depend on the idea that the eigenvector 
with the maximum eigenvalue A max can be obtained by multiplying the 
trial vector r by the matrix fl repeatedly. Therefore, it is difficult to apply 
the methods to a large matrix, in particular, to a transfer matrix whose 
size increases exponentially with the lattice size of a system, requiring a 
correspondingly large memory area. 

Now we shall develop a new method which does not require such a 
large memory area, i.e., the difficulty can be circumvented in the following 
way. 

We choose 

0 = Y', u(n) (2.3) 
n 

for the trial vector. Then, the Rayleigh quotient (2.1) can be written as 

1 L 
A(L)=z(L) ~ As(nl) l~ W(nj, nj+l) (2.4) 

rt t ,..., r tL + 1 j = l  

with 

As(n) := (~ ,  flu(n)> 

W(n, rn) := <u(n), flu(m)> 

(2.5) 

(2.6) 
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and 

L 

Z~L~ := ~ [I W(nj, nj+l) (2.7) 
n l , . . . , n L+  1 j =  1 

The outstanding feature of the representation (2.4) is that it has precisely 
the form of the thermal average of the observable As(n1) with respect to 
the configurations O := {(nl ..... nL+~)} on the lattice {1, 2,..., L +  1} with 
the Boltzmann weights 

L 

1-I w(nj, nj+,) (2.8) 
j = l  

because the definition of the matrix .~ guarantees that these Boltzmann 
weights are nonnegative. 

Our representation (2.4) may be of interest in its own right, but (at 
present) is most useful as a basis of a new numerical method for calculating 
the maximum eigenvalues of transfer matrices. Since the right-hand side of 
(2.4) is the thermal average of a classical system, one can invoke any of 
one's favorite methods to calculate it. 

For example, by using the importance-sampling method introduced 
by Metropolis et al. (1-3) (see Appendix B), one can calculate the 
L-approximate eigenvalue A (L) for the maximum eigenvalue A max of the 
matrix A. As is well known, (~-3) the size of the memory area necessary for 
the calculation with the Metropolis algorithm is roughly proportional to 
the lattice size of the system. In fact, as will be shown in the following 
sections, one has only to treat several of the matrix elements 
W(n, m ) =  (u(n), ,~u(m)) in (2.4) per one updating procedure in Monte 
Carlo simulations in our method without calculating all the matrix 
elements (u(n), Atu(m)) ( l=  1, 2,...) as in the above power method. Thus, 
the difficulty in the above power method can be circumvented by our 
Monte Carlo power method. 

In addition, we emphasize that our method is different from the 
transfer-matrix Monte Carlo method introduced by Nightingale and 
B16te, (9) which is a variant of the Green's-function Monte Carlo method by 
Ceperly and Kalos. (~~ In fact, their method does not utilize the idea of 
importance sampling. (H) 

3. A P P L I C A T I O N  TO THE S Q U A R E - L A T T I C E  ISING M O D E L  

In this section, we shall calculate the free energy of the square-lattice 
Ising model with the nearest-neighbor interaction by using our Monte 
Carlo power method of trial. It will be shown that the free energy of the 
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square-lattice Ising model is represented as the thermal average of the 
observable (3.6) below in the square-lattice Ising model with free boundary 
conditions in one of the space directions. 

The Hamiltonian of the Ising model is given by 

H : = -  ~ ~ j  (3.1) 
(i,j) 

where the Ising spin a~ at the ith site takes the values + 1, and the summa- 
tion runs over all the nearest-neighbor pairs of the sites i, j. As is well 
known, the free energy per spin in the M •  square lattice with the 
periodic boundary condition can be written as O2) 

1 
fg.N'--  /~MNlOgTr I47N~ (3.2) 

in terms of the transfer matrix WN with the matrix elements 

N 

( u ( a l , . . ,  , aN) , WNH(Gtl,..., aN) ) = ~ exp[flaj(aj+aj.+l)] ( 3 . 3 )  
j = l  

with the periodic boundary condition 

f i N +  1 = (7"1 (3.4) 

in the orthonormal basis {u(at,..., aN)}, where/3 is the inverse temperature 
and Tr denotes the trace over the spin states. Here, we use the so-called 
diagonal-to-diagonal transfer matrix WN, which is more convenient than 
the row-to-row transfer matrix ~12) for the following calculations. 

Then, the free energy per spin in the thermodynamic limit can be 
written as 

max f =  - lim -z- logA N (3.5) 
NTov  #iv 

in terms of the maximum eigenvalue A~ ax of the diagonal-to-diagonal 
transfer matrix WN. 

Now, in our formula (2.4), the L-approximate eigenvalue A ~  ) for the 
maximum eigenvalue A~v ax is obtained from the thermal average of the 
observable 

ws, N(<,..., 4+):= Y+ <u(al ..... aN), ~Nu(<,..., <+)> 

= (4 cosh 2fl) u/2 exp a'.a'. j . i+  1 
1 

(Js := �89 log cosh 2fl) (3.6) 
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on the surface in the ( L +  1)x  N Ising system with the free boundary 
conditions in one space direction, and with the Boltzmann weights (3.3). 

We have performed Monte Carlo simulations with the standard 
Metropolis algorithm on the ( L +  1)x N =  16 x 16 lattice using the per- 
sonal computer NEC PC-9801F. After equilibration runs of 10 3 Monte 
Carlo steps per spin, the L-approximate eigenvalue A ~1 was obtained with 
106 Monte Carlo steps per spin. 

The free energy f multiplied by (- /3) ,  

- / 3 f ~  NlOg A~) ( N =  16, L = 1 5 )  (3.7) 

is given in Table I. The statistical errors are estimated in the standard way 
(for example, see ref. 3). The exact values of Onsager (13) and the results 
obtained by Schlijper e t a / .  (14) in 1990 are also given in the same table. 

Schlijper et  al. used a combination of the cluster-variation method and 
the local-state method in Monte Carlo simulations (14) on the 64 x 64 lattice 
on Cray 1S-2300 and Cray X-MP EA/164 computers. They calculated the 
free energy by counting the occurrences of various cluster configurations in 
10 4 lattice-configuration sweeps. Their method does not work well at the 
critical temperature T =  T c .  In fact, in spite of the fact that our size of the 
system is much smaller than theirs, our result at T c is more precise than 
theirs. From our results, it seems that the finite-size corrections are 
relatively small in the present system. In fact, we were able to obtain 
satisfactory results in comparison with Onsager's exact values. Of course, 
it would be necessary for general systems to extrapolate a sequence of finite 
systems to an infinite one, as in the next section. 

Table  I. The Free Energy of the  Square -La t t i ce  Ising M o d e l  a 

Free energy -/~f 

Temperature 
T/Tc Present work Exact Schlijper et al. (1990) ~14~ 

0.5 1.76363(4) 1.763668... 1.763668(1) 
0.7 1.26684(7) 1.266894... 1.266894(1) 
1.0 0.92967(5) 0.929694... 0.9295(1) 
2.0 0.74376(1) 0.743754... 0.743753(1) 
4.0 0.705402(3) 0.7054090... 0.705406(1) 

aNumerals in parentheses give the statistical errors in the last digit in the 
Monte Carlo simulations. T c denotes the exact critical temperature of 
Onsager.~13) 
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To conclude this section, we note that our Monte Carlo power 
method can be applied also to the calculation of the interface free energies 
in the two- and three-dimensional Ising models. (2) 

4. A P P L I C A T I O N  TO THE S P I N - l / 2  XY HEISENBERG C H A I N  

In this section, we apply our Monte Carlo power method to the 
spin-l/2 X Y  Heisenberg chain as an example of quantum systems. We will 
show that the free energy is represented as the thermal average of an 
observable in a two-dimensional Ising system with free boundary condi- 
tions in one of the space directions. 

4.1. Transfer  Mat r ix  for  the S p i n - l / 2  XY Heisenberg Chain 

The Hamiltonian is given by 

N 
HN := % Hi, j+1 (4.1) 

j= l  

with 

1 . . . .  + ~Sy~Ll)  (4.2) 

and with the periodic boundary condition 

8N + 1 = 81 (4.3) 

where 8j is the Pauli spin matrix for the site j ( j  = 1,..., N). 
In order to calculate the free energy by our method, one has to define 

a transfer matrix whose maximum eigenvalue leads to the free energy. (1s-21) 
For this purpose, in the same way as in our previous papers, (19-21) we use 
the path integral idea of Suzuki (< 7) to transform the partition function of 
the model (4.1) with an even number of spins, 

Z2,, := Tr exp( - flH2n) (n = 1, 2,...) (4.4) 

into a partition function of a two-dimensional Ising system, where Tr 
denotes the trace of the matrix. 

By using the Trotter formula, we can approximate the partition 
function (4.4) by (15-2~ 

( /~/2/(1)\ ( R/~/(2)\ ] M 
~2n _ _ _  U ~ n ) ~  7(M' := Tr exp P M ' )  exp - -  (4.5) 
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where 

and 

/~(1) :=  ~ /~2l--1,2l (4.6) 2n 
l=1 

fr(~) := ~ /42t,2,+1 (4.7) 
/=1 

We call M the Trotter number. Further, by using the path integral idea, we 
can write the M-approximate partition function (4.5) as (19'2~ 

z(M)2n = ~ ul,,exp - u 
On 

(u2, exp ( R/4(2)\  2M /~/~ (2) \ x - ~ - e - ) u 3 ) . . . i u ,  , e x p ( 2 - ~ " - 0 u l )  (4.8) 

where 

and 

1 2 n. :=  { ( ~ . , .  ..... , u~.")} 

u7 :=  u(aT) | u(~7) @ -.. @ u(a2~.) 

(4.9) 

(m = 1, 2 ..... 2M) (4.10) 

( ~ =  - 1) 

(4.11) 

Therefore, by (4.6) and (4.7), it is easily shown that the partition 
function (4.8) is equivalent to one of a two dimensional Ising system with 
a four-Ising-spin interaction. (19' 20) For this two-dimensional Ising system, 
one can define two transfer matrices, one in the "time" direction, and the 
other in the "space" direction. In terms of the transfer matrix U2M in the 
"space" direction, the M-approximate partition function (4.8) with n = ML 
(L = 1, 2,...) can be written as (19' 20) 

z ( M )  := Tr(O2v) 2" (n = ML; L : 1, 2, . . . )  2n (4.12) 

The explicit expression of ~-~2M is given by (19' 20) 

~fZM := TzMRzM (4.13) 
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with 

and 

M 

k2~t := I~ /2"2,-1.2, (4.14) 
l = l  

~7i. i := �89 a/M + 17~17f + r  - e a/M~fj) (4.15) 

where ~j is the Pauli spin operator for the site with time j ( j  = 1, 2,..., 2M), 
and T2M is an operator that shifts any periodic array of the spin states by 
one lattice unit backward along the "time" direction. 

The free energy per spin in the thermodynamic limit is given by 

1 lim lim 1 7(M) 
2m / : =  - ~ m t ~  Mtoo ~mlog (4.16) 

But the order of limits can be interchanged by the theorem. (16-21) Therefore, 
by (4.12), the free energy per spin in the thermodynamic limit can be 
written as 

f = _ ~ l i ~ n o  li m 1 r1" oo ~ log Tr(U2M) 2ML 

1 
= - -  lira log A2~, x (4.17) 

f l  M t oo 

in terms of the maximum eigenvalue A 2m~ ~ of the transfer matrix r 
To apply our method to the transfer matrix Uzu, we study the proper- 

ties of this matrix. 
From the definition U2u in (4.13)-(4.15), one notices immediately that 

it commutes with 

2M 

"~tzt := Z r (4.18) 
j = l  

We define 0ZM;k to be the operator U2M restricted to the k-down-spin 
subspace. We similarly define k2~a:k. 

Then, as we showed in a previous paper, (a~ there exists an integer l 
such that (02M;k) z is strictly positive in the basis 

{ b/('L" 1 ,. . . ,  TRA4) } (4.19) 

restricted to the k-down-spin subspace, where 

u(vl ..... v2M) := u(zl ) |  "'" | U(ZzM) (4.20) 
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and u(r) is given by (4.11) with r =  _ 1. Further, we showed (2~ that the 
maximum eigenvalue A2~t x is equal to the maximum eigenvalue A2~M of 

~ff2M;M" 
Therefore, it is sufficient to apply our method to the eigenvalue 

problem of the transfer matrix U2M;M for calculating the free energy of the 
present model (4.1). 

Now, by using our formula (2.4), we calculate the L-approximate 
eigenvalue A(L) for the maximum eigenvalue A 2m~. It is obtained from ~ 2M;M 
the thermal average of the observable 

tYS.2M;M(~I,-.., TiM) 

:= ~ (U(~,.,., ~M), ~7~,;~(~'~,..., ~M)) 
r l  ,-- . ,  "C2M 

1 + e [J/M 

- Ks exp - l~ 1 2 cosh (Ksr2t~ 1~2t) 
! 

I K  s 1 := ~ log tank ( 2 ~ )  1 (4.21) 

on the surface in the (L + 1)x 2M Ising system with the free boundary 
conditions in the "space" direction, and with the Boltzmann weights (~5 2~) 

L 
H <b/('/TJ'"" TJM )' ^ j + l  ,r j+  1 , .  U2M;MbI(T1 '" . . . .  2M )2  

j = l  
L 

-= Iv[ (u(l~{,..., Ill,t), RZM.M(j), U(U{+I, "'', ,2M"J+I~') (4.22) 
j = l  

where 

with 

and 

#~ := zj j+l (l = 1, 2,..., 2M) 

rZJ----rZM+, j ( j = l ,  2 ..... L + I )  

(4.23) 

(4.24) 

I T 2 M R 2 M ; M T 2 M  ( j =  o d d )  (4.25) 
/~2M~M(J) := ~R2M;M (j  = even) 

The right-hand side of (4.22) can be written as the product of 

' Vi.ju(l~i, la~) ) (4.26) w(ui, ~j; u,, ~) := < u ( ~ , ,  ~ j ) ,  ~ ' 

that is, it equals the product of the Boltzmann weights for a four-Ising spin 
interaction. 
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4.2. Problems in Quantum M o n t e  Carlo Simulat ions 

Before applying our method to the system derived from the path 
integral formula, we note that the following three serious problems are 
known to exist generally in Monte Carlo simulations for quantum many- 
body systems. (5' 6) 

(i) Negative Boltzmann weights. (~' 6) 

(ii) Ergodicity of Monte Carlo sequences. (5' 22-24) 

(iii) Wiesler freezing. (25) 

These problems do not arise in the standard classical systems such as the 
Ising model in the previous section, i.e., these problems are peculiar to the 
systems derived from the path integral formula or our new formalism in 
general cases in Section 2. 

However, in our present case, problem (i) does not arise, because all 
Boltzmann weights (4.26) are nonnegative, and problems (ii) and (iii) can 
be circumvented in the following way. 

For problem (ii), we use the neighboring-four-spin flips for the bulk 
Ising spins,(5' 6) and the neighboring-two-spin flips for the Ising spins on the 
surface of the system with the free boundaries as the elementary updating 
procedures F. Then, we can show, following from the argument in the next 
Section 5, that the updating procedures F define an ergodic sequence (see 
Appendix A for the details). 

In addition, we emphasize that our method does not use the often very 
costly global-spin-flip procedures (6' 22. 26) at all. 

4.3. "n-Fold W a y  Algor i thm'"  

To proceed to discuss problem (iii), we review briefly Wiesler 
freezing. (25) 

To obtain the free energy per spin in the thermodynamic limit from 
the maximum eigenvalue A 2mff = A 2~M, one has to take the limit M T oe of 
M in (4.17). However, when M is sufficiently large for a given inverse 
temperature fl, the transition probabilities become very small because the 
Boltzmann weights 

W ( + I ,  +1; +1, + 1 ) =  W ( - 1 , - 1 ; - 1 , -  1)=s inh  ()k~) (4.27) 

in (4.26) become very small compared with other nonzero Boltzmann 
weights in (4.26). Therefore, the rate of generating new configurations 
becomes quite slow, and consequently, much time is wasted for rejected 
events in the standard Metropolis algorithm. This is the Wiesler freezing. 



280 Koma 

To avoid this problem, we use the "n-fold way" algorithm introduced 
by Bortz e t  al.  (3' 27) (see Appendix B for the details). In this algorithm, once 
spins are selected, a flipping for the spins is immediately performed without 
wasting any time by rejecting events, because spins are selected in propor- 
tion to their probability of flipping. Of course, the computation time to 
generate a new configuration using the "n-fold way" algorithm is longer 
than the computation time to try a new configuration using the standard 
Metropolis algorithm. But, in situations in which the standard algorithm 
often rejects trial configurations, the "n-fold way" algorithm proceeds much 
faster. (27, 28) 

4.4. Results for the Free Energy of the Spin- l /2 XY 
Heisenberg Chain 

With the "n-fold way" algorithm and using the personal computer 
NEC PC-9801F, we performed Monte Carlo simulations for the present 
system defined by (4.22) with the length L+1~<63 of the chain, and 
with the Trotter number M ~  16. After equilibration runs of 104 Monte 
Carlo steps per spin, the L-approximate maximum eigenvalue A(L) was "~2M;M 
obtained with 10 6 Monte Carlo steps per spin. The statistical errors are 
estimated in the standard way (2' 3) using the standard deviations which are 
defined by using the average (B.14). 

The free energy per spin in the thermodynamic limit is given by 

m a x  1 lira lira log A(L) (4.28) 1 l i m  log A2M;M = ~ M~ oo L T m l l 2 M ; M  f= ?MT  

from (4.17). We take the double limits by using the least-square fitting 
combined with the AIC method. (19'2~ Here, we remark that the limit 

Table II. The Free Energy of the Spin- l /2  XY 
Heisenberg Chain a 

Free energy - / ~ f  

Inverse temperature 
/~ Present work Exact 

0.5 0.752(1) 0.7537... 
1.0 0.918(1) 0.9174... 
2.0 1.418(4) 1.4152... 

10.0 6.396(5) 6.3924... 

a Numerals in parentheses give the error in the last 
digit. 
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MT oo is effected by numerical extrapolation using the fact that maximum 
max max eigenvalue A2M = A2~;M is a function of M2. (6"7' 16. 19,20. 3o) 

The estimates of the free energy f multiplied by ( - / ? )  and the exact 
values(31, 32) are given in Table II. 

Our results agree very well with the exact values. 
Thus, our Monte Carlo power method is useful for calculating the free 

energy of quantum systems as well as the one of classical systems as shown 
in Section 3. 

To conclude the section, we note that our Monte Carlo power method 
can be applied also to the calculation of the correlation lengths of classical 
and quantum many-body systems. (12' 17 21, 33-37) 

5. ERGODICITY OF MONTE CARLO SEQUENCES 

As mentioned in the previous section, the ergodicity of Monte Carlo 
sequences does not simply hold for quantum systems, in more general, for 
our new representation (2.4) of the maximum eigenvalue of the matrix 
in Section 2, 

In this section, we study general properties of Monte Carlo sequences 
generated by the Monte Carlo algorithm for our system with the 
Boltzmann weights (2.8). In particular, Theorems 5.9 and 5.10 below 
guarantee the ergodicity of Monte Carlo sequences in our method. In fact, 
these theorems are very useful for determining updating procedures in 
Monte Carlo simulations of quantum systems as in Section 4. 

In the following, we restrict the configuration space ~ =  
{(nl, n2 ..... r / L + 1 )  } in (2.4) to the subspace 12 + of all the configurations 
with nonzero Boltzmann weights (2.8). 

We define B + to be the set of all the branchings of configurations 
{(ni, ni+l), (ni, n~+~)} on the sublattice {i, i +  1} c {1, 2 ..... L +  1} such 
that 

h i +  1 5~n'i+l ( 5 . 1 )  

Further, we define B f  to be the set of all the branchings of configura- 
tions { (n i, nJ+~), (n~-, nj+l) } on the sublattice {j, j + 1 } c { 1, 2,..., L + 1 } 
such that 

,,j ~ n 5 (5.2) 

If two configurations co~,/+,=(n, ..... n~+s) and co~.i+s= (n'e ..... n's+.,) 
on the sublattice {i,...,i+s} ( I~< i~<L-1 ,  2<~s<~L+l-i) satisfy the 
conditions 

ni=n~, ni+lCn~+l, ni+s-l¢n~+,-l, ni+s=ni+s (5.3) 
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fUi+l . . Di+s -1  

. . 

�9 D i+s-1 f31+i 

ni+s 

Fig. 1. The loop with length s on the sublattice {i, i+l,..., i+s}. The bonds represent 
nonzero Boltzmann weights. 

then we say that {coi, i+s, co'i.i+,} is the loop with the length s; this loop is 
represented in Fig. 1. 

Clearly, this loop has the branching {(ni, ni+ 1), (n~, n'~+ 1)} e B+,  and 
also {(ni+s 1,ni+s),(n~+s 1,ni+j}sBY+s i. 

For the branching b + e B + , we define 

._ ~minp ~ E(b+ ) l(p) [E(b + ) # ~5] (i = 1, 2,..., L) (5.4) 
s(b+) " - ( L + 2 - i  [E(b+)  = ~ ]  

where E(b) is the set of all loops having the branching b, l(p) is the length 
of the loop p, and ~ denotes the empty set. 

Similarly, for the branching b 7 e Bj-, we define 

~minp~ e(b/)l(p) [ E ( b f  ) -r ~ ]  ( j  = 1, 2 ..... L) (5.5) 
t(bs := U +  ~ [E(b/ )  = ;~] 

I .emma 5.1. For any b+={(ni,  n~+l),(ni, n~+l)}eB+ (i= 
1, 2,..., L), the integer s(b + ) of (5.4) satisfies the inequality 

2 <~s(b+ )<~k + l (5.6) 

where the integer k is determined by the condition that all the matrix 
elements of j k  are strictly positive (see the definition of the matrix j in 
Section 2). Therefore, k is independent of the linear dimension L + 1 of the 
lattice { 1, 2,..., L + 1 }. 

Proof. Clearly, from the definition of s(b + ) of (5.4), we have 
2 <<. s(b +). This is the lower bound of (5.6). 

From the condition for the matrix ~k, we have 

{u(n,+ 1), Aku(Fn)) ~0 (5.7) 
and 

{ u(n'i+ l), .'~ku(m) ) # 0 (5.8) 
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for any configuration m, and for the configurations ni+l and n';+l in the 
branching b + . 

If i+k<~L, then (5.7) and (5.8) imply that there exists a loop p with 
length l(p)<~k+ 1 such that p has the branching b +. Therefore, by (5.4), 
we have 

s(b~-)<~l(p)<~k + 1 

Conversely, if i + k > L, then we have 

k> L-i>~s(b+ ) -  2 

by (5.4). 
Thus, we obtain (5.6). QED 

Similarly, we have the following result: 

(5.9) 

(5.1o) 

L e m m a  5.2. For a n y  bj-={(nj,  nj+l),(i~j,/'lj+l)}~B j ( j =  
1, 2 ..... L), the integer t(b]-) of (5.5) satisfies the inequality 

2<~ t(bf )<~k + l (5.11) 

where k is the same integer as in Lemma 5.1. 

By using the integers s(b[-) and t(b]-) in Lemmas 5.1 and 5.2, we 
define the integer 

r := max{r +, r -  } (5.12) 

with 

and 

where 

r + := max s(b +) ( 5 . 1 3 )  
b + ~ B + 

r -  := max t(b-) (5.14) 
b ~ B  

L L 

B + := ~) B + and B - : =  Q) B f  
i = l  j = l  

By Lemmas 5.1 and 5.2, we have the following result: 

(5.15) 

L e m m a  5.3.  The integer r of (5.12) satisfies the inequality 

2<~r<~k+ 1 (5.16) 

822/71/1-2-19 



284 Koma 

where the integer k is determined by the condition that all the matrix 
elements of ~k are strictly positive�9 Therefore, the integer k is independent 
of the linear dimension L + 1 of the lattice { 1, 2,..., L + 1 }. 

For the configuration co = (n 1 ,..., nL+ ~), we define the q-neighborhood 
Uq(co) (q >~ 2) of co to be the set of all the configurations of three types co', 

t t COb~ COc, where 

co'a:=(nl,...,ni, n'i+l,...,ni+q l,ni+q,...,nL+l) 

m; :=  (n',,..., n ' i_ , ,  n, ..... n,+  , )  

(1<~i, i+q<~L+l)  
(5.17) 

(l <<.i~q<~L + l) 
(5.18) 

and 

r r n r  coc :=  (nl  ..... ni, ni+l,..., L + t )  ( l<~L+2--q<~i<~L+l) 

These configurations co, co'a, co;,  and co" are represented in Fig.  2. 

(5.19) 

fo 

foa" 

< q > 

( a )  

~ �9 ~ - - - - - O  

O o.-...,. 

~ - �9 ~ 

fo b 

Fig. 2. 

�9 �9 �9 - - - 0  ~ ~ - �9 

fo .._.~.o 

."---o 
foC 

< q .  > 

( h )  ( c )  

The configuration pairs (a) {o), c9'~}, (b) {o), ~o;}, and (c) {~o, o);}. 
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Further, we define the branching with tails 

bff~i := {(r/1 ..... ni, hi+ 1)~ (r/i,..., hi, ni+ 1)} 

bj~r+ 1 := {(nj, nj+, ..... nL+l), (n'j, nj+, ..... nr+ , )}  
L 

B: := U bLi 
i = 1  

and 

That is, b+~~ is the 

(ni+l ~n;+l) 
(5.20) 

(nj Cn}) (5.21) 

(5.22) 

L 

B ;  := L) (5.23) 
j = l  

branching {(ni, n~+l), (ni, n's+l)} with the tail 
(n,,..., ni_ l), and bj~L+ 1 is the branching {(nj, nj+,), (nj., n j+l)} with the 
tail (nj+2 ..... nL+l). 

For b_ e B + w B 2 and q >~ 2, we define Cq(b ~ ) t o  be a set of all the 
pairs of configurations {m, co'} = {(nl ..... nL+~), (nl,..., nk+l)} such that 
co'e Uq(co) and that {co, co'} contains the branching b_ .  

k o m m a  5.4. Let q~>r, where r is given by (5.12). Then, we have 
Cq(b~ ) r ;2~ for any branching b_ e B2 w B2 .  

Proof. If b ~ ~ B 2 ,  then b_ contains a branching b~+eB[.  
Therefore, from the definitions of (5.12)-(5.15) for r, we have s(b[)<<, r <<. q. 
This implies, by (5.4), that there exists a loop p with the length l(p)<~q 
and having the branching b~ +, or L + 2 - i < ~ q .  By combining this with 
the definitions (5.17) and (5.19) for Uq(co), we can easily find a pair of 
configurations {co, co'} e Cq(b~).  

The case of b_ e B can be treated in the same way. QED 

D e f i n i t i o n  5.5. Let co and co' be two configurations, and let F be 
a set of updating procedures in a Monte Carlo algorithm. We define 

co ~F CO' 

if and only if co and co' can be connected by applications of elements 
w's in F, i.e., updating procedures w's define the nonzero transition 
probabilities, which can be written as 

w(co~co' )=w(cOo~col)w(col~c%)."w(cok l ~ cok = co') (5.24) 

and 

w(co'-'co)=w(co'=co~cok_~)...w(col ~ coo = co) ( 5 . 2 5 )  
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in terms of elements 

w(o)i~co~+l),w(coi+~-+coi)~F ( i=0 ,  1 ..... k - l )  (5.26) 

Dof in i t i on  5.6. Let F be a set of updating procedures in a Monte 
Carlo algorithm. We say that F has the updating range q ~> 2 if and only 
if, for any given branching b_ 6 B + w B S, there exists a pair of configura- 
tions {co, co') such that co ~FCO' and {o9, ~ ' )  ~ Cq(b_). 

I . omma 5.7. Let co~ and co'i be two configurations which can be 
written as 

and 

with 

f O i :  (?'/1,"', /'/i, F/i+ 1,'", n L + l )  

' ( n l  ..... < ,  ' ' ) (J)i  ~ h i +  1 ~,.. ~ F / L + I  

(5.27) 

( 5 . 2 8 )  

ni+l#n'i+l ( i=  1, 2,..., L) (5.29) 

that is, {coi, co~} has the branching b~~i= ((nl,..., he, ni+ 1), 
(nl,...,ni, ni.+l))~B + (see Fig. 3), and let F be a set of updating 
procedures that has the updating range q = r, where r is given by (5.12). 
Then 

(3)i~F(Oti ( i=  1 ..... L) 

Proof. Clearly, (coo, cn~} ~ B+ by the definitions of (5.20) and (5.22). 
Therefore, by Definition 5.6, there exists {co, co'} such that CO~FCO' and 
(co, co'} E Cq((O9 L, co)~}). By the definition of Cq(... ), (o3, co'} contains 

Fig. 3. 

6O i 

D i § i ----o 
i 

n j  

ni+l 
63 i 

The configuration pair {(% u)~) with the branching {(n~, ni+ i), (n~, n'i+ ~)}. 
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{co L, co2}. This implies {co, co'} = {coL, co2}. Combining this with co ~Fco' 
t gives coL ~FcoL" 

Therefore, it is sufficient to show that if coi+1 ~FCO~+~ for any cOi+l 
and co'i+~, then COi"~FCO'i for any coi and col. 

As shown in Fig. 3, the pair of configurations {coi, co;} of (5.27) and 
(5.28) contains the branching b~L;. Therefore, by the assumption for F, 
there exist two configurations 

I i+s~'"~ c o ? =  ..... n?+,_,,n* 
H +  + ((n~,...,n,n~+~, i+2,...,nL+~) 

and 

I c~ (nl ..... ni, n'i+x, nF+2 ..... n;-+~_l, n~ 
( (nl ..... ni, n'i+ l, nF+ 2 ..... n[+ l) 

with an integer s (s ~< r) (see Fig. 4). 

6) i 

�9 �9 �9 ~ ] t ~  �9 �9 �9 

I3i+I . . . . . . .  

6) i 

(a) 

(L + 1 - i>~r)  

(L+ 1 - i < r )  

(5.30) 

(L + l - i > ~ r )  

(L+ 1 - i < r )  

(5.31) 

Fig. 4. 

0 i 
�9 . ~ . 

~ -  . . . . . .  ~ ~)[ --~ 

�9 . ( J i "  ni+l --o 

< P > 

(b) 

The configurations ~oi, ~o~, co(,  and 0) 7 in the cases of (a) L+l- - i>>-r  and of 
(b) L + l - i < r .  
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These satisfy 

(D? ~ F ( D i  (5.32) 

e)' for any and co' Further, from the assumption that O.)i+l~F i + 1  (A)i+l i+1, 
we have 

(J) i ~ F CO :" and 

The relations (5.32) and (5.33) imply 

(l) i ~ F (D :i 

Thus, the lemma has been proved. QED 

Similarly, we have the following result: 

L e m m a  5.8. 
written as 

and 

with 

coy ~FOOl (5.33) 

(5.34) 

Let cnj and ~} be two configurations which can be 

eoj= (nl,..., n j_  l, nj,..., nL+l) (5.35) 

co}= (n'l,..., n}_ l, nj,..., nL + l) (5.36) 

nj_  1 #n' s-~ ( j =  2, 3,..., / + 1) (5.37) 

(see Fig. 5), and let F be a set of updating procedures that has the updating 
range q = r, where r is given by (5.12). Then 

O.)j~F(D J ( j = 2 ,  3 ..... L + I )  

a)j 

i a 

nj-I  

> nj 
�9 " �9 - - 0  

nj-1 
cJj 

Fig. 5. The configuration pair {o~j, co}} with the branching {(ns_l, nj), (n}_,, nj)}. 
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Theorem 5.9. Let F be a set of updating procedures that has the 
updating range q =  r, where r is given by (5.12). Then, F defines an ergodic 
Monte Carlo sequence if the linear dimension L + 1 of the lattice in (2.4) 
is sufficiently large, i.e., fie is positive in the basis {u(n)},. 

ProoL It is sufficient to show that any two configurations 
co=(n 1 hE+l) and co'= (n'l n' .... , ,..., L+I) can be connected by applications 
of elements of F, i.e., co ~FCO" 

By the assumption on the linear dimension L and the definition of the 
matrix ,i, we have 

(U(nl), ALu(nL+ 1)) 7~0 (5.38) 

This implies that there exists a configuration co* that can be written as 

co* = (n,, n*,..., n*, n~+l) (5.39) 

Therefore, by Lemmas 5.7 and 5.8, we have 

co ~ F  CO* and co* ~Fco' (5.40) 

Thus, we obtain 

co ~F cot QED (5.41) 

Theorem 5.10. Let F be a set of updating procedures that has the 
updating range q = r, where r is given by (5.12). Then, F defines an ergodic 
Monte Carlo sequence if the matrix .~ is symmetric in the basis {u(n)}n, 
i.e., the transposed matrix t~ equals A itself. 

Proof. Let co= (nl,... , hE+l) and co'= (n~ ..... nL+l) be two configura- 
tions. Then, by the definition of the matrix A, there exists an integer k such 
that 

(u(nl), fl2kLu(n'l) ) ~ 0 (5.42) 

This implies that there exist configurations -L+l,'",'~r+l"(i) ,(k) and n1(l),..., n ~ - i )  
such that 

• <~(n~) ,  . ~ u ( n ~ + , ) )  • . . .  • <u(n~+,'~), ~ u ( n ~  ~ ~)> 
• (u(n] k ')), "~Lu(n(Lk~+,)~ • (u(n(L*)+ l), ftLu(n',)) 5 0  (5.43) 

We note that, for any two configurations m and m', 

( u(m), fiLu(m') ) = ( u(m'), .~Lu(m ) ) (5.44) 
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by tA = A in the basis {u(n)}n. Further, note that if, for two configurations 
m and m', 

(u(m), ALu(mr)) r (L>~ 1) (5.45) 

then there exists a configuration co* that can be written as 

co* = (m, n* ..... n*_ 1, m') (5.46) 

Therefore, there exist two configurations co(t) and co(k) that can be 
written as 

co (1) (nl, n(21),..., ,(l) ~ (5.47) "~L+I] 

gnd 
co ck) = (ni , n([), ..., '~ 1) (5.48) 

and that satisfy 
co(l) ~ F  CO(k) (5.49) 

by Lemmas 5.7 and 5.8. 
Further, by Lemmas 5.7 and 5.8, we obtain 

(J) ~'~ F (J) (1) a n d  co' "~F(D (k) ( 5 . 5 0 )  

These relations (5.49) and (5.50) imply 

(D "~ F (Dr Q E D  (5.51) 

The applications to the spin-l/2 X Y  Heisenberg chain in the previous 
section are given in Appendix A. 

To conclude this section, we emphasize that in our method, there 
exists no such difficulty as in the standard power methods mentioned in 
Section 2. In fact, one can calculate the Rayleigh quotient A (L) without 
calculating the matrix elements (u(n), Aku(m)) ( k =  1, 2,...), i.e., one has 
only to treat several of the matrix elements W(n, m) = (u(n), Au(m)) in 
(2.4) in each updating procedure in the Metropolis algorithm; the number 
of elements W(n, m) per one updating can be determined by the integer r 
of (5.12), which is independent of the linear dimension L + 1 of the lattice 
in our formula (2.4) (see Lemma 5.3). 

APPENDIX A. PROOF OF THE ERGODICITY OF THE 
MONTE CARLO SEQUENCES FOR THE 
S P I N - l / 2  XY HEISENBERG CHAIN 

In this appendix, we show, following from the argument in Section 5, 
that the updating procedures F introduced in Section 4.2 define an ergodic 
sequence. 
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First, we calculate r of (5.12), which will be equal to the updating 
range of the procedures F which consist of the neighboring-four- and 
neighboring-two-spin flips. 

Consider the branching b,. + := {(~, pi+ 1), (pi, p~+ v)}, where 

It satisfies 

and 

#2 

g := ~it4 

( U(,i), /~2M;M(i) U(t 1' + ~ ) ) ~ 0 

<u(p~), R2M;M(i ) u( , '+l ' )> 5 0  

by the definition of the branching and (4.22)-(4.25). 
We note that 

<u(la'+ 1), k2M:,(i + 1) u(g i+ ~)> # 0  

and 

(/g(l[li+ 1'), R2M;M(i+ 1) u(~i+ 1')) ://=0 

by (4.14), (4.15), and (4.25). Further, since the matrices k2~t;M("" 
symmetric, we have 

(u(p i+ ~), RZM;M(i + 2) U(gi)) r 0 

and 

(A.1) 

(A.2) 

(1.3) 

(A.4) 

(U(fli+ i'), k2m;M( i + 2) U(D') ) 5 ~ 0 (A.7) 

by (A.2), (A.3), and (4.25). 
The relations (A.2)-(A.7) imply that the loop Pi, i+3 has the length 3, 

where 

Pi, i+3:={(~l i ,~ i+l ,~ i+l ,~ l i ) , (~ ' ,~ i+" ,~l i+l ' ,~ i )}  (A.8) 

Further, one can immediately notice that this loop has the branching 

b~+2~-- {(~1 i+1, |li)(|l/+1', ~1/)} 

On the other hand, there is no loop with the length s~<2 by (4.14), 
(4.15), (4.22), and (4.25). 

(A.6) 

(A.5) 

are 
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Therefore, we have r = 3 by (5.4), (5.5), and (5.12)-(5.15). 
Next, we show that the updating procedures F (the neighboring-four- 

spin flips) connect 
(2)i , i+3 ] =  (~[ i  ~ / + 1 ,  ~.1i+ 1, g i )  

with 
(DPi, i+ 3 : =  ([[i, ~ i + 1 '  111i+ l' t i i )  

in the loop Pi, i+3  of (A.8). 
We proceed by classifying the cases as follows. 

(1) i=even.  
By (4.14) and (4.25), we have 

( u ( " i ) ,  R2M;M(i) u(lt i+ 1)> 

M 

I-I < u 0 4 , _ , ,  '+ '  '+ ~" V21 1,21L/(/2 21 1 , ~ 2 l  1 ) )  
1=1 

and 

(u(lai),/~2M;M(i) U(! #+ 1')) 
M 

~r , i ,  i+ 1' i+ 
~---H (~U(#2'-- l '  ]'/~')' 2' 1,2/"t/~'2/ 1 '#2 /  1')~) 

l=1 

Therefore, if i /~2, 1 = #2,, then we have 

1~i+1 i+1 i+1 '  = ] ~ t  1' 
2l 1 ~ ~2l  ~ /~2l 1 

by (4.15). 
Conversely, if " /~2~-~ ~ #2,, then we have 

i+1 __f12; l  i+1 '  = __ ~,1~7 1' f l2 l - -  1 ~ ~ f121-- 1 

(A.9) 

(A.IO) 

(A.11) 

(A.12) 

o r  
i+1  = _ _ # ~ - 1  i + l '  i+1 '  

~2l--1 = - - ~ 2 l  1 = # 2 /  

In the case of (A.13), the four-spin flip changes 

/ 2 / - -1 ]  
I i + l  t '  
',t~2, I \ u ; 7 '  

into 

I a l - ' I  

(A.13) 

(A.14) 

(A.15) 
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The results (A.11)-(A.15) imply that one can connect (Di.i+ 3 with co~,i+3 by 
many applications of the four-spin flips. 

(2) i =  odd. 
This case can be treated in the same way in the above. 
Thus, the updating procedures F connect coi, i+3 with co'i.i+3. 
Further, if the branchings are in the free boundaries, i.e., 

bff =b~-  = {(~.[L, ~[IL+ 1), (][L j[L+I')} (A.16) 

o r  

b~+l = b  1 = {(~1 ~2), (~1', ~2)} (A.17) 

then, in the same way, one can connect lu L+I with ~L+V, and also ~11 with 
la ~' by many applications of the two-spin flips. 

Therefore, for any given branching b~ with tails, one can easily 
find a pair of configurations {co, co'}~Cq=r=3(b_) in Definition 5.6 in 
Section 5, i.e., the updating procedures F have the range 3. 

Combining this with Theorem 5.9, we have that the updating 
procedures F define an ergodic sequence if the linear dimension L + 1 of the 
lattice in (4.22) is sufficiently large. 

Further, we note that one can easily extend Theorem 5.10 to the one 
for the present system (4.22), which can be rewritten in terms of two 
symmetric matrices /?2M;M(''" )- That is, the updating procedures F define 
an ergodic sequence for the present system with any size L + 1 of the linear 
dimension. 

A P P E N D I X  B. " n - F O L D  W A Y "  A L G O R I T H M  (3. z7, zs) 

We first review the standard Metropolis algorithm. ~l=3) 
Consider the master equation for the probability P,(co) that configura- 

tion co occurs at the nth step, 

Pn(CO)= 2 P n - l ( C ~  w(cot-- ' ) 'co)-[-Pn-l(C~ (n = 1, 2,...) 
o) , =;k (.o 

(~.1) 

where 

w(co --* co) := 1 - Q(co) (B,2) 

with 

Q(co) := ~ w(co--.co') (B.3) 
o9' ~ o9 
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and w(00--.00') (00~00') is the transition probability from 00 to 00' that 
satisfies the detailed balance condition 

P~q(00) w(00 --* co') = P~q(00') w(00' ~ 00) 

with the canonical distribution 

(B.4) 

1 
Peq(00) := ~ exp[ - f iH(00) ]  (B.5) 

Here, H is the Hamiltonian and Z is the partition function, i.e., 

Z := ~ exp[ - fill(00)] (B.6) 
(D 

Clearly, there exists an arbitrariness in the choice of the transition 
probability w. Metropolis et al. (1) proposed 

w(00 ~ co') = -1, otherwise 

for co ~a co', where v is an arbitrary time unit that does not affect the 
detailed balance condition (B.4), and that satisfies the condition such that 

~, w(00 --* 00') <~. 1 (B.8) 

for any configuration 00. In passing, we note that another way is the 
so-called "heat-bath" method, (38, 39) 

r -1  exp{ - f l [ H ( 0 0 ' ) -  H(00)] } 
w(00 ~ 00') = (B.9) 

1 + exp{ - f i [H(~o ' )  - H(00)] } 

for co, where r satisfies the same condition as above. 
Starting from an initial configuration COo, one can construct a Markov 

sequence {00o, o01,002,..} by the master equation (B.1), then the thermal 
average of an observable O, 

(O) :=2 0(00)  Peq(00) (B.10) 
o) 

can be written in terms of an arithmetic average 

1 T 
( O )  = lim ~ ~ O(00fl 

T~oz l ' j=  o 
(B.11) 
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However, the usefulness of this standard algorithm is limited by the 
low transition probability (B.7) or (B.9) of generating new configurations. 

To avoid this difficulty, Bortz et aL proposed the "n-fold way" 
algorithm.~ 27, 283 In their method, a Markov sequence is generated by the 
master equation (28) 

P*(co) = ~, P*- 1(co') w*(co' -~ co) (B.12) 

with 

w,lco_§247 tco co'Ilco__co,) tB. 3/ 
That is, in their Monte Carlo simulations, once one event co ~ co' is 
selected, the updating is immediately performed without wasting any time 
by rejected events. Of course, because of Q in (B.13), the computation time 
to generate a new configuration using the "n-fold way" algorithm is longer 
than the computation time to try a new configuration using the standard 
Metropolis algorithm. But in situations in which the standard algorithm 
often rejects trial configurations, the "n-fold way" algorithm proceeds much 
faster.(27, 28) 

The thermal average of the observable O is given by an average, 

( O )  = lim Zf=o O(mj*) Q-l(co,)  (B.14) 
rT~ Zjr.=o Q- l (co , )  

where {co*} is a Markov sequence generated by the master equation 
(B.12). 

To show (B.14), we note that, by (B.1)-(B.5), (B.12), and (B.13), 

and 

w*(co' -~ co) = 1 (B.15) 
cO 

Q(co) Peq(co) = ~ Q(co') Peq(co') w*(co' ~ co) (B.16) 
co' 

Pe*n(co) = E Pe*~(co') W*(co' --' co) (~.173 
co' 

where Pe* is the equilibrium distribution for the master equation (B.12). 
Equation (B.15) implies that the vector with all components 1 is the right 
eigenvector with the eigenvalue 1 of the matrix w*(co' --* co). Therefore, the 
maximum eigenvalue of this matrix is 1 by the Perron-Frobenius theorem. 
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On the other hand, Eqs. (B.16) and (B.17) imply that both of the vectors 
Q(co) Peq(CO) and P*q(co) are left eigenvectors with the eigenvalue 1 of the 
matrix w*(co' ~ co). Therefore, again by the Perron-Frobenius theorem, we 
have 

Nx Pe*q(co) = Q(co) Peq(co) (B.18) 

where N is a positive constant that is independent of the configuration co. 
Thus, with (B.10), we obtain (B.14). 

Finally, we note that the detailed balance condition 

Pe~q(co) w:g(co __~ COt) = pe:teq((D,) W,(cot ~ co) (B.19)  

holds from (B.4), (B.13), and (B.18). 
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